Class 10 Maths Chapter 7: Coordinate Geometry– NCERT Notes & Formula

Class 10 NCERT Maths Chapter 7: Coordinate Geometry

1. Introduction

Coordinate Geometry combines algebra and geometry using the Cartesian plane. Every point is represented by an ordered pair \((x, y)\) where \(x\) is the horizontal coordinate and \(y\) is the vertical coordinate.

2. Distance Formula

The distance between two points \(P(x_1, y_1)\) and \(Q(x_2, y_2)\) is: \[ PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

3. Section Formula

If a point \(R\) divides the line segment joining \(P(x_1, y_1)\) and \(Q(x_2, y_2)\) in the ratio \(m:n\), then the coordinates of \(R\) are: \[ R\left( \frac{mx_2 + nx_1}{m + n},\ \frac{my_2 + ny_1}{m + n} \right) \]

4. Midpoint Formula

If \(R\) is the midpoint of \(PQ\), then: \[ R\left( \frac{x_1 + x_2}{2},\ \frac{y_1 + y_2}{2} \right) \]

5. Area of a Triangle

The area of a triangle with vertices \(A(x_1, y_1)\), \(B(x_2, y_2)\), and \(C(x_3, y_3)\) is: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \]

6. Example Problems

Example 1: Find the distance between \(A(3, 4)\) and \(B(7, 1)\).
\[ AB = \sqrt{(7 - 3)^2 + (1 - 4)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \]

Example 2: Find the coordinates of the point dividing the line segment joining \(P(2, 3)\) and \(Q(4, -1)\) in the ratio \(3:1\).
\[ R\left( \frac{3 \cdot 4 + 1 \cdot 2}{3 + 1},\ \frac{3 \cdot (-1) + 1 \cdot 3}{3 + 1} \right) = \left( \frac{14}{4},\ \frac{0}{4} \right) = (3.5, 0) \]

Example 3: Find the area of a triangle whose vertices are \(A(1, 1)\), \(B(4, 4)\), and \(C(6, 1)\).
\[ \text{Area} = \frac{1}{2} \left| 1(4 - 1) + 4(1 - 1) + 6(1 - 4) \right| = \frac{1}{2} \left| 3 + 0 - 18 \right| = \frac{15}{2} = 7.5 \]