Class 10 Maths Chapter 8: Introduction to Trigonometry– NCERT Notes & Formula

Class 10 NCERT Maths Chapter 8: Introduction to Trigonometry

Trigonometry studies the relationship between the angles and sides of a right-angled triangle. It’s widely used in navigation, architecture, astronomy, and even in GPS technology.


Trigonometric Ratios

In a right-angled triangle:

  • Sine: \(\sin \theta = \frac{\text{Perpendicular (p)}}{\text{Hypotenuse (h)}}\)
  • Cosine: \(\cos \theta = \frac{\text{Base (b)}}{\text{Hypotenuse (h)}}\)
  • Tangent: \(\tan \theta = \frac{\text{Perpendicular (p)}}{\text{Base (b)}}\)
  • Cosecant: \(\csc \theta = \frac{\text{Hypotenuse (h)}}{\text{Perpendicular (p)}}\)
  • Secant: \(\sec \theta = \frac{\text{Hypotenuse (h)}}{\text{Base (b)}}\)
  • Cotangent: \(\cot \theta = \frac{\text{Base (b)}}{\text{Perpendicular (p)}}\)

Standard Trigonometric Values

\(\theta\) \(\sin\theta\) \(\cos\theta\) \(\tan\theta\) \(\csc\theta\) \(\sec\theta\) \(\cot\theta\)
0 1 0 Not defined 1 Not defined
30° \(\frac{1}{2}\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{\sqrt{3}}\) 2 \(\frac{2}{\sqrt{3}}\) \(\sqrt{3}\)
45° \(\frac{1}{\sqrt{2}}\) \(\frac{1}{\sqrt{2}}\) 1 \(\sqrt{2}\) \(\sqrt{2}\) 1
60° \(\frac{\sqrt{3}}{2}\) \(\frac{1}{2}\) \(\sqrt{3}\) \(\frac{2}{\sqrt{3}}\) 2 \(\frac{1}{\sqrt{3}}\)
90° 1 0 Not defined 1 Not defined 0

Trigonometric Identities

For \(0^\circ < \theta < 90^\circ\):

\[ \sin^2\theta + \cos^2\theta = 1 \] \[ \sec^2\theta - \tan^2\theta = 1 \] \[ \csc^2\theta - \cot^2\theta = 1 \]

Quick Example

Example: If \(\sin\theta = \frac{p}{h} = \frac{3}{5}\), find \(\cos\theta\).

Using \(\sin^2\theta + \cos^2\theta = 1\): \[ \left(\frac{3}{5}\right)^2 + \cos^2\theta = 1 \] \[ \frac{9}{25} + \cos^2\theta = 1 \] \[ \cos^2\theta = \frac{16}{25} \] \(\Rightarrow \cos\theta = \frac{4}{5} = \frac{b}{h}\)


📝 Memory Tip

Remember the short forms:

  • \(\sin\theta = p/h\)
  • \(\cos\theta = b/h\)
  • \(\tan\theta = p/b\)
  • \(\csc\theta = h/p\)
  • \(\sec\th